FDD FILE

ASSIFICATION NEW

FOR OFFICIAL LISE ONLY

CENTRAL INTELLIBENCE PAGENCY INFORMATION

REPORT

CD NO.

COUNTRY

DATE OF

SUBJECT

Scientific research

UBSR

1947

INFORMATION 1947

HOW

PUBLISHED

Periodicals

DATE DIST. 2/ January 1949 STAT

WHERE

PUBLISHED

NO. OF PAGES 2

USE ONLY

DATE

PUBLISHED

JAN 25 1955 FOR OFFICIAL

SUPPLEMENT TO

LANGUAGE

Russ tan

REPORT NO.

THIS IS UNEVALUATED INFORMATION

SOURCE

Documentary as indicated. (Information requested.)

RECENTLY PUBLISHED RESEARCH OF THE LENIEGRAD ENGINEER-ING ECCHONY INSTITUTE INEXI V. M. MOLOTOV

"Thermal Decomposition of Ester Chlorides of Silicic Acid," Yu. N. Vol'nov, Leningrad Eng Econ Inst imeni V. N. Molotov

"Zhur Chahch Khimii" Vol 17, 1947, pp 1428-35

Generally, stability increases with increased molecular weight and decreases from n-esters to isc-esters. Aromatic esters are more stable than alighatic. EtoSiCl₂ (50 g), heated to 100° 2 hours and distilled, gave, beside the unchanged material (75%), 7 g SiCl₄ and 2.7 g (Eto)₂ SiCl₂. When EtoSCl₃ was refluxed 4 hours, gas evolution was noted (identified as EtCl), while distillation of the rectus gave 50% unchanged material, about 5 g SiCl₄, and 3 g (Eto)₂SiCl₂. (Eto)₂SiCl₂ vas unchanged after 2 hours at 100° or refluxing 4 hours. (Etb)₂SiCl(80 g), heated to 100° 2.5 hours, gave 3 g (Eto)₂SiCl₂, 63 g starting material and about 1.5 g (Eto)₆SiCl₂, 63 g starting material and about 1.5 g (Eto)₆Si. When (Eto)₃SiCl (30 g) was refluxed 6-7 hours, there was obtained essentially 100° disproportionation: 2.5 g Et₂O, 1 g SiCl₄, a small amount of (Eto)₂SiCl₂, 12 g (Eto)₄Si, and 40 g recides, from which it was possible to isolate seems (2to)₆Si₂O,₇O₇ 150-70°. (SE₁₃OSiCl₃ (20 g) after 4 hours at 100° gave 1.1 g SiCl₄ and 4 g (GE₁₃O)₂SiCl₂, besides 87-94% starting material. CSE₁₃OSiCl₃ was unchanged after heating to 100°, but on refluxing 6 hours there were obtained from 13 g starting material 2.5 g crude SiCl₁, 2 g (GE₁₃OSiCl₂) and 2 g tows the real unchanged molecular weight and decreases from n-esters to 13 g starting material 2.5 g crude SiClb, 2 g (CgH170)gSiCl2, and 2 g tar; the rest was unchanged starting material. (CgH170)gSiCl is unchanged on

FOR OFFICIAL USE ONLY

CLASSIFICATION

STATE DISTRIBUTION

Sanitized Copy Approved for Release 2011/06/24: CIA-RDP80-00809A000600210123-2

STAT

heating to 100°, but after refluxing as above gave C6H160.b 124-6°, tar, and (C8H170)gfic12, beside the starting material; no tetraslkyl derivative was isolated. PhOB1612 (30 g) refluxed 5 hours gave a trace of S1Cl1, 28 g unchanged material, and about 1 g crude (PhO)g6ic12. (PhO)g8ic1, refluxed 6 hours, with continuous collection of low-boiling products gave 0.2 g SiCl1, 0.2 g (PhO)g8ic12, 35 g unchanged material, and 2 g (PhO)g8ic Thymyltrichlorosilans (20 g) after refluxing 5 - 6 hours gave SiCl1, unchanged material, and dithymyldichlorosilans. o-Methoxyphenyltrichlorosilans (30 g) refluxed 4 hours gave 0.8 g SiCl1, unchanged material, bis- (o-methoxyphenyl) dichlorosilans (undistillable resin), and MeCl, besides a crystalline solid, isolated on standing, from material b 240-320°; the solid (no mp or yield given) is apparently a cyclic phenylenedicaydichlorosilane, as a result of loss of MeCl in an intramolecular reaction.

- የክክ